Wir nutzen Cookies, um unser Angebot so barrierefrei wie möglich zu gestalten. Mit der folgenden Abfrage lassen sich die einzelnen Hilfsmittel auswählen und die Auswahl wird auf diesem Rechner lokal in Cookies gespeichert. Die Abfrage kann jederzeit über den Schalter oben rechts auf der Seite aufgerufen und verändert werden.

Alle Funktionen deaktivieren Alle Funktionen aktivieren Ausgewählte Funktionen aktivieren

LOReley: Leistungsdichte H2-Freisetzung in LOHC-Reaktoren mittels effizienter Flächenkatalysatoren

Laufzeit: vom 01.07.2020 bis 30.06.2023

Das Projekt LOReley zielt mit seinen Forschungs- und Demonstrationsaufgabenarauf ab, einen Teil der vorhandenen Probleme und Fragestellungen auf dem Gebiet der stofflich basierten Energiespeicherung zu lösen. Dies umfasst sowohl technologische als auch ökonomische Aspekte. Flüssige organische Wasserstoffträger (LOHC, liquid organic hydrogen carrier) stellen eine zukunftsträchtige Option zur sicheren, gut skalierbaren und kosteneffizienten Speicherung von Wasserstoff dar. Der Forschungsschwerpunkt von LOReley liegt in der Entwicklung und im Aufbau eines neuartigen Konzeptes für Dehydrierreaktoren mit einer Dauerleistung von mind. 1 kW und einer Spitzenleistung von 5 kW (bezogen auf den freigesetzten Wasserstoff) für LOHC auf Basis laserstrukturierter Oberflächen, welche eine signifikante Vereinfachung des Reaktorbaus und dabei bisher unerreichte Raum-Zeit-Ausbeuten ermöglichen. Damit trägt das Projekt zur kostengünstigen und nachhaltigen Speicherung von elektrischer Überschussenergie bei. Übergreifende wissenschaftliche Ziele liegen in dem Einsatz edelmetallarmer Katalysatoren für den LOHC Prozess durch optimierte Strukturierungs- und Beschichtungsverfahren auf Flächen-katalysatoren. Die Arbeiten ermöglichen die Modifikation eines einfachen Plattenwärmeübertragers zu einem kompakten und leistungsdichten chemischen Reaktor.

Förderkennzeichen/Bestellnummer:
03E13023C

Mittelgeber/Auftraggeber:
Bundesministerium für Wirtschaft und Energie

Partner:
Fraunhofer Heinrich-Hertz-Institut, Goslar
Friedrich-Alexander-Universität Erlangen-Nürnberg
Hydrogenious LOHC Technologies GmbH, Erlangen
AMPHOS GmbH, Herzogenrath
MIOPAS GmbH, Goslar

Projektleitung:
Dr. rer. nat. Thomas Gimpel