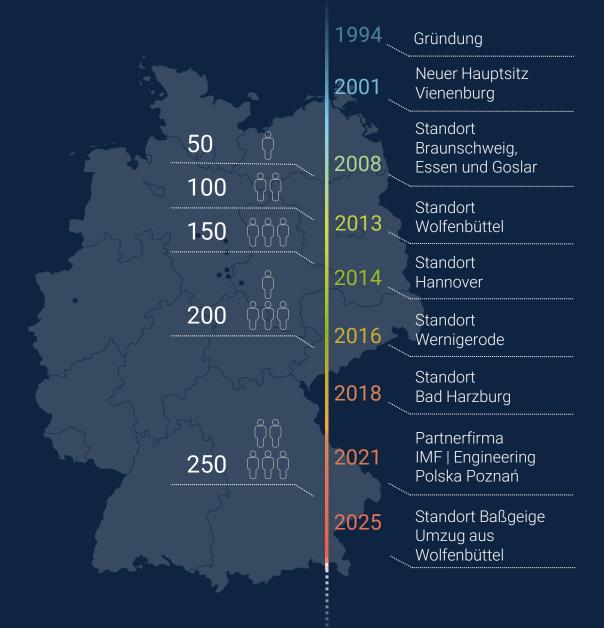
I M F


Unternehmergespräch ENERGIE

Aktuelle Planungskonzepte zur nachhaltigen Wärmeversorgung mit Eisspeichern

25. September 2025

- Ihr Partner in den Bereichen:
 - ✓ Technische Gebäudeausrüstung
 - ✓ Industrielle Versorgung
 - ✓ Green Engineering
 - ✓ Facility Management
 - ✓ Schwimmbadtechnik
- Bodenständiges und familiengeführtes Unternehmen in der zweiten Generation
- 30 Jahre Erfahrung in allen Leistungsphasen und Anlagengruppen
- Über 7.850 erfolgreich abgeschlossene Projekte
- Langjährige Kunden aus Industrie, Gewerbe und der öffentlichen Hand

UNTERNEHMENSPRÄSENTATION Ingenieurdienstleistungen

Technische Gebäudeausrüstung

Industrielle Versorgung

Green Engineering

Facility Management

Schwimmbadtechnik

Verwaltungsgebäude

Wohn-/Geschäftshäuser

Bildungseinrichtungen

Sonderbauten

Produktionsanlagen

Forschung und Entwicklung

Prüfstände

Werkstätten und Labore

Energiekonzepte

Energieberatung

Simulation

Monitoring

FM-Ausschreibungen

Datenerhebung

Bewirtschaftungskonzept

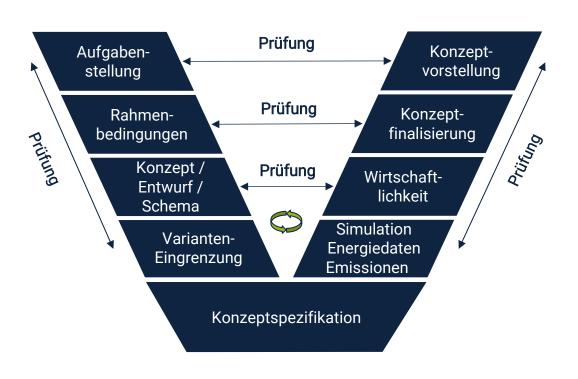
Audits & CAFM-/EM-Projekte

Freibäder

Wellnessbereiche

Brunnen

Wasserspiele

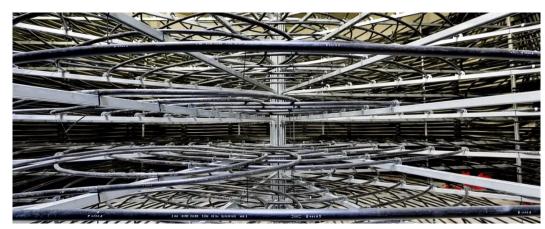

CAD-Planung | Bauleitung | BIM | Analyse | Simulation | Projektmanagement | Konzept | Simulation | Wirtschaftlichkeit

IMF

UNTERNEHMENSPRÄSENTATION

Leistungen Green Engineering

AKTUELLE PLANUNGSKONZEPTE ZUR NACHHALTIGEN WÄRMEVERSORGUNG MIT EISSPEICHERN Motivation


IMF

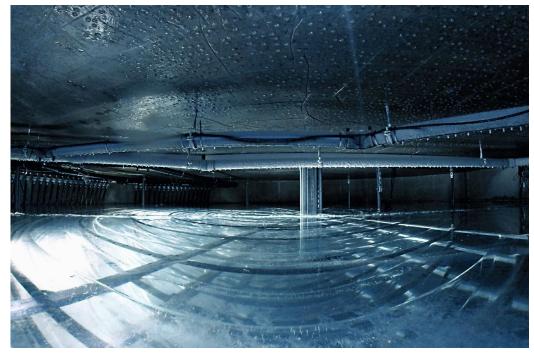
AKTUELLE PLANUNGSKONZEPTE ZUR NACHHALTIGEN WÄRMEVERSORGUNG MIT EISSPEICHERN Grundlagen

Aufbau von Eisspeichern

- Unterirdische Zisterne mit Wasser gefüllt (meist aus Beton, ungedämmt)
- Integrierte Wärmetauscher
- Eisspeicher besitzt Überlauf
- Eingebunden in Heiz-/Kühlsystem
- Typische Größen: Ein- und Mehrfamilienhäuser (10 m³ 20 m³), Gewerbegebiete / Quartiere (bis zu 10.000 m³)

Beispielhafte Darstellung des Inneren eines Eisspeichers mit Kunststoffrohren (Foto: Bundesverband Wärmepumpe (BWP) e.V.)

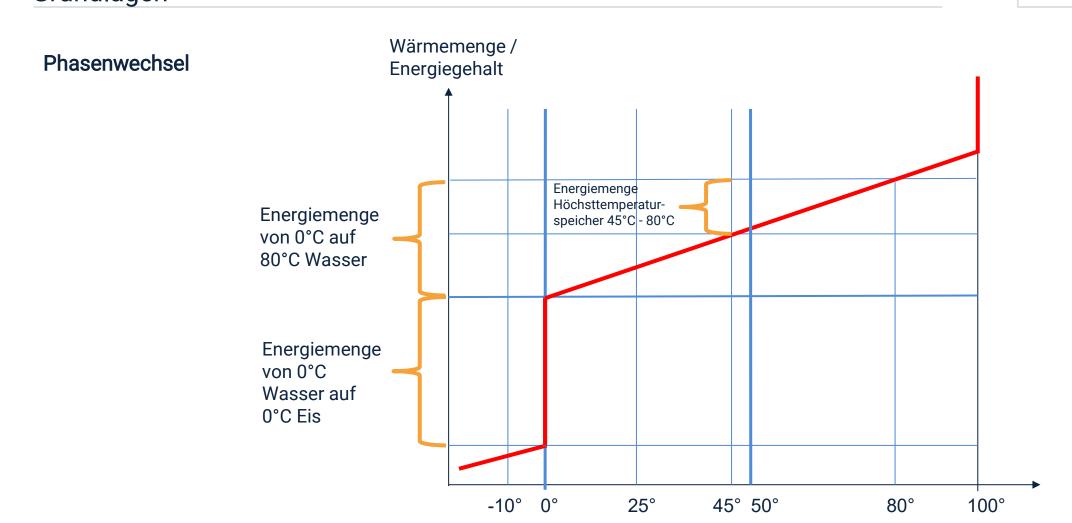
Eisspeicher-System VITOFRIOCAL von Viessmann (Abbildung: Viessmann Werke)



aktuelle planungskonzepte zur nachhaltigen wärmeversorgung mit eisspeichern Grundlagen

Funktionsweise

- Bei Änderung des Aggregatzustandes wird entweder Energie gespeichert oder freigesetzt (Kristallisationsenergie)
 - Nutzung: beim Gefrieren → Energie wird frei
 - Regeneration: beim Schmelzen → Energie wird gespeichert
- Um 1 kg Eis bei 0°C auf 1 Liter Wasser bei 0°C zu bringen, wird Energie benötigt
- Diese Energie ist genauso groß wie die Energie, die gebraucht wird, um 1 Liter Wasser von 0°C auf 80°C zu erhitzen
- Beim Gefrieren von Wasser werden ca. 90 Wh pro kg freigesetzt
- Dabei bleibt die Temperatur konstant bei 0°C



Eisspeicher-System von Innen (Abbildung: Viessmann)

aktuelle planungskonzepte zur nachhaltigen wärmeversorgung mit eisspeichern Grundlagen

AKTUELLE PLANUNGSKONZEPTE ZUR NACHHALTIGEN WÄRMEVERSORGUNG MIT EISSPEICHERN

Grundlagen

Heizbetrieb (Winter)

- Wenn Wasser im Eisspeicher gefriert, wird Kristallisationsenergie freigesetzt
- Diese Energie wird von der Wärmepumpe aufgenommen und zur Wärmeerzeugung verwendet
- Eisspeicher wird regeneriert → das Eis taut auf

Kühlbetrieb (Sommer)

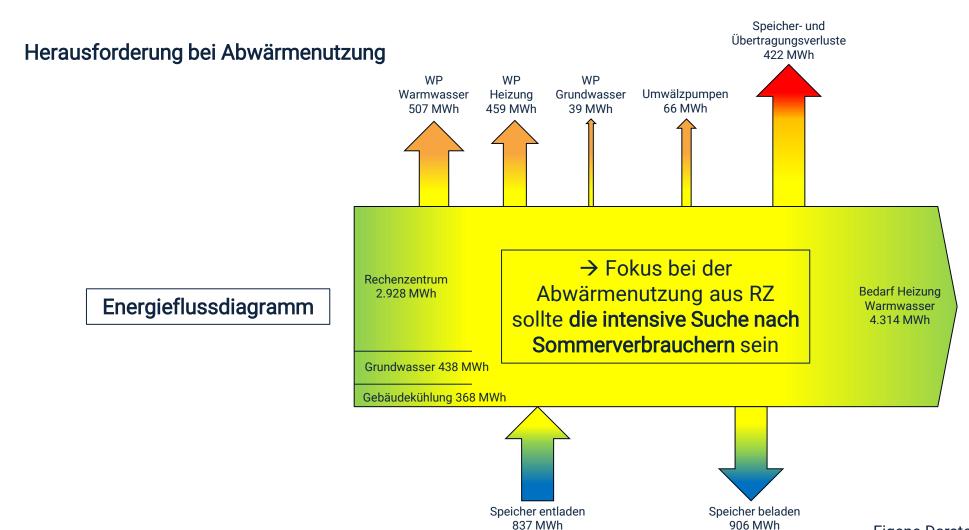
- Im Sommer läuft das System umgekehrt: Wärme aus dem Gebäude wird in den Eisspeicher geleitet
- Das im Speicher vorhandene Eis nimmt die Wärme auf und schmilzt
- Beim Schmelzen wird die Kristallisationsenergie wieder "aufgebraucht"
- → Der Speicher wirkt wie ein Kältepuffer

aktuelle planungskonzepte zur nachhaltigen wärmeversorgung mit eisspeichern Grundlagen

Regenerationsmöglichkeiten von Eisspeichern

PVT

Abwärme



Regenerationsmöglichkeiten (Abbildung Viessmann, Solaridee, Bundesverband Wärmepumpen)

AKTUELLE PLANUNGSKONZEPTE ZUR NACHHALTIGEN WÄRMEVERSORGUNG MIT EISSPEICHERN Grundlagen - Abwärmenutzung von Rechenzentren

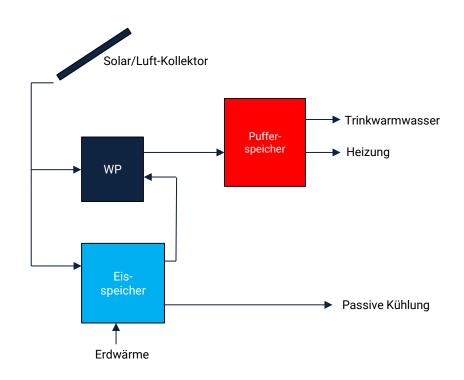
AKTUELLE PLANUNGSKONZEPTE ZUR NACHHALTIGEN WÄRMEVERSORGUNG MIT EISSPEICHERN Relevante Faktoren / Herausforderungen

Tragfähigkeit des Bodens für gefüllten Eisspeicher (statische Berechnung) Höhe des Grundwasserspiegels Ausreichende Einbautiefe und Einbaufläche sowie Verfügbarkeit Dimensionierung des Speichers: Heizenergiebedarf, klimatische Bedingungen, Integration anderer Wärmequellen Energieeffizienz des Gebäudes: energetischer Standard, Umsetzbarkeit einer Flächenheizung → effizient bei niedrigen Vorlauftemperaturen Verfügbarkeit der Energiequelle zur Regeneration des Eisspeichers

AKTUELLE PLANUNGSKONZEPTE ZUR NACHHALTIGEN WÄRMEVERSORGUNG MIT EISSPEICHERN Vorteile und Nachteile von Eisspeichern

- Unabhängigkeit von fossilen Brennstoffen
- Ausschließlich erneuerbare Energiequellen
 - → Reduktion von CO₂-Emissionen, umweltfreundlich
- Hohe Effizienz: bessere Leistungszahl als bei klassischen Luft-Wärmepumpen
 - → geringer Stromverbrauch→ niedrige Energiekosten
- Keine tiefen Bohrungen
 - → keine Genehmigung erforderlich
- Beheizung im Winter und Kühlung im Sommer

- Hohe Anschaffungskosten
- Platzbedarf für Eisspeicher
- Keine Langzeiterfahrung aus Referenzprojekten
- Zusätzlicher Planungs- und Bauaufwand für den Eisspeicher (z. B. Simulation etc.)



AKTUELLE PLANUNGSKONZEPTE ZUR NACHHALTIGEN WÄRMEVERSORGUNG MIT EISSPEICHERN Systemlösungen mit Eisspeichern

Komponenten einer Eisspeicherheizung

- 1. **Eis-Energiespeicher:** Behälter, in dem im Wasser gespeicherte Energie und die Kristallisationsenergie genutzt wird, wenn Wasser zu Eis gefriert
- 2. Wärmepumpe: nutzt gespeicherte Energie aus Eisspeicher und/oder Wärme aus Solar/Luft-Kollektor (abhängig vom Lastzustand und den meteorologischen Bedingungen), um Wärme zu generieren
- 3. Regeneration des Eisspeichers, z. B. Solarkollektoren oder Luftabsorber: dienen als Wärmequelle für die Wärmepumpe und zur Regeneration des Eisspeichers
- 4. Pufferspeicher: zur Bevorratung des Warmwassers
- 5. Wärmeverteilsystem: transportiert Wärmeträgermedium im Gebäude (Wasser) zur Wärmepumpe und zum Eisspeicher
- **6. Wärmeübergabe:** z. B. Heizkörper oder Fußbodenheizung, die Wärme an den zu versorgenden Räumen abgeben
- 7. Regelungssystem: steuert und überwacht die Eisspeicherheizung

AKTUELLE PLANUNGSKONZEPTE ZUR NACHHALTIGEN WÄRMEVERSORGUNG MIT EISSPEICHERN Anlagengrößen nach Anwendungen

Kleine Eisspeicher (< 5 m³) für EFH

- einige hundert Liter Inhalt, in Kombination mit z. B. Solarkollektoren
- können im Heizungskeller aufgestellt werden
- Eisspeicher mit einer Wärmepumpe in einem Gerät integriert

Eisspeicher (10-20 m³ Fassungsvermögen) für EFH und MFH

 erdverlegte Eisspeicher mit mehreren m³ Inhalt in Kombination mit z. B. unverglasten, nicht selektiven Solar-Luft-Absorbern (Schwimmbadkollektoren)

Große Eisspeicher (bis zu 10.000 m³) für Gewerbegebiet / Quartiere

erdverlegte Eisspeicher mit Tausenden m³ Inhalt

AKTUELLE PLANUNGSKONZEPTE ZUR NACHHALTIGEN WÄRMEVERSORGUNG MIT EISSPEICHERN Kostenschätzung

Eisspeicher mit Fassungsvermögen 856,5 m³

Eis-Energiespeichersystem		Richtpreise *exkl. MwSt.
Stahlbeton-Rundbehälter	Höhe: 5,0 m Durchmesser: 16 m	176.500 €
Wärmetauschersystem	Verrohrung im Speicher	299.800 €
Soleleitung pro 5 m Entfernung	Verrohrung Sole + Elektroleerrohr	10.900 €
Sole (Lieferung)	Tyfocor GE 14.800 Liter	19.400 €
Füllen und Entlüften	Tyfocor GE 14.800 Liter	27.700 €
	Summe Spezifische Kosten	534.300 € ca. 624 €/m³

Eisspeicher mit Fassungsvermögen 185 m³

Eis-Energiespeichersystem		Richtpreise *exkl. MwSt.
Stahlbeton-Rundbehälter	Höhe: 2,0 m Durchmesser: 12,5 m	84.000 €
Wärmetauschersystem	Verrohrung im Speicher	74.700 €
Soleleitung pro 5 m Entfernung	Verrohrung Sole + Elektroleerrohr	4.800 €
Sole (Lieferung)	Tyfocor GE 5.200 Liter	6.500 €
Füllen und Entlüften	Tyfocor GE 5.200 Liter	8.100 €
	Summe Spezifische Kosten	178.100 € ca. 963 €/m³

IMF

AKTUELLE PLANUNGSKONZEPTE ZUR NACHHALTIGEN WÄRMEVERSORGUNG MIT EISSPEICHERN Fördermöglichkeiten

Bundesförderung für effiziente Gebäude – Einzelmaßnahmen (BEG EM), u. a.:

- Heizungstechnik (hier: Wärmepumpe, Eisspeicher sowie Solaranlage)
- Fördersatz für NWG: max. 35%; für WG: max. 70%
- Fachplanung und Baubegleitung in Höchstsumme inbegriffen

Höchstgrenzen förderfähiger Ausgaben <u>pro Gebäude insgesamt</u> (unabhängig vom Zeitraum und unabhängig von der Anzahl gestellter Anträge):

Wohngebäude

• für 1. WE: 30.000 €

• für 2. bis 6. WE: 15.000 €/WE

■ ab 7. WE: 8.000 €/WE

Nicht-Wohngebäude

• für Gebäude bis 150 m² NGF: 30.000 €

- für Gebäude ab 150 m²:
 - 150 400 m² NGF: 200 €/m²
 - 400 1.000 m² NGF: zusätzlich 120 €/m²
 - > 1.000 m² NGF: zusätzlich 80 €/m²

AKTUELLE PLANUNGSKONZEPTE ZUR NACHHALTIGEN WÄRMEVERSORGUNG MIT EISSPEICHERN Fördermöglichkeiten

Bundesförderung für effiziente Wärmenetze (BEW), u. a.:

Modul 1

Transformationspläne & Machbarkeitsstudien (inkl. Planungsleistungen HOAI LPH 1-4)

- Wärmeversorgung > 16 Gebäude oder > 100 Wohneinheiten
- Transformationspläne: Umbau bestehender Wärmenetzsysteme (treibhausgasneutrales Wärmenetzsystem bis 2045)
- Machbarkeitsstudien: Prüfung Umsetzbarkeit & Wirtschaftlichkeit des Konzeptes eines neu zu errichtenden Wärmenetzsystem mit überwiegend (75%) erneuerbarer Wärmeerzeugung
- Förderung von 50% der förderfähigen Kosten (max. 2 Mio. €)

Modul 2

Systemische Förderung für Neubau & Bestandsnetze

- Neubau von Wärmenetzen (mind. 75% mit erneuerbaren Energien & Abwärme gespeist)
- Transformation von Bestandsinfrastrukturen zu treibhausgasneutralen Wärmenetzen
- Wärmeversorgung > 16 Gebäude oder > 100 Wohneinheiten
- Voraussetzung: Vorlegung einer Machbarkeitsstudie bzw. Transformationsplans (muss nicht im Rahmen des Moduls 1 gefördert sein, dennoch Anforderungen zum Mindestinhalt einhalten)
- Förderung umfasst alle Maßnahmen von Installierung der Erzeugungsanlagen über Wärmeverteilung bis Wärmeübergabe
- Förderung von 40% der förderfähigen Ausgaben (max. 100 Mio. €)

AKTUELLE PLANUNGSKONZEPTE ZUR NACHHALTIGEN WÄRMEVERSORGUNG MIT EISSPEICHERN Fördermöglichkeiten

Bundesförderung für effiziente Wärmenetze (BEW), u. a.:

Modul 3

Einzelmaßnahmen

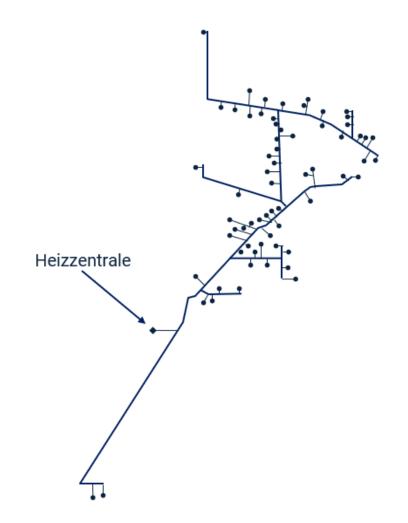
- Wärmeversorgung > 16 Gebäude oder > 100 Wohneinheiten
- Förderfähige Einzelmaßnahmen:
 Solarthermieanlagen | Wärmepumpen | Biomassekessel |
 Wärmespeicher | Rohrleitungen | Wärmeübergabestationen
- Förderung von 40% der förderfähigen Ausgaben (max. 100 Mio. €)

Beispiel Ablauf Förderung; Quelle: BEW Merkblatt Modul 1

Modul 4

Betriebskostenförderung

- Erzeugung erneuerbarer Wärmemengen aus Solarthermie & strombetriebenen Wärmepumpen
- Voraussetzung: Solarthermieanlage bzw. Wärmepumpe zuvor durch BEW gefördert
- Auszahlung auf Basis von Kalenderjahren (Ende 10 Jahre nach Inbetriebnahme der geförderten Anlage) & Höhe abhängig von durch Antragsteller eingereichten Daten

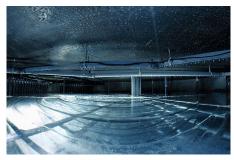

AKTUELLE PLANUNGSKONZEPTE ZUR NACHHALTIGEN WÄRMEVERSORGUNG MIT EISSPEICHERN

Praxisbeispiel 1: Nahwärmenetz

Projektbeschreibung

- Projektstandort: Ortschaft in der Nähe von Wolfsburg
- Spitzenlast von max. 801 kW_{th} ohne Gleichzeitigkeit und Verluste
- 60 Anschlussnehmer
- Vorlauf Wärmenetz: 80°C
- Rücklauf Wärmenetz: 50°C

	Leistung [kW]	Wärmebedarf [kWh]
Ohne Verluste und GZ	801	1.630.000
Inkl. Verluste und GZ	684	2.012.286


Unternehmergespräch ENERGIE

AKTUELLE PLANUNGSKONZEPTE ZUR NACHHALTIGEN WÄRMEVERSORGUNG MIT EISSPEICHERN

Praxisbeispiel 1: Nahwärmenetz: Systemschema

Quelle und Regeneration

Eis-Energiespeicher Höhe = 5 m, Durchmesser = 19m (Energiequelle)

Quelle: Viessmann Holding International GmbH

3x Rückkühler (Regeneration und Sommerbetrieb)

Quelle: Güntner GmbH & Co. KG

Energieerzeuger

500 kW Wärmepumpen-Kaskade (Grund- und Mittellast)

Quelle: Mitsubishi Electric Europe B.V.

700 kW Gasbrennwertkessel (Spitzenlast)

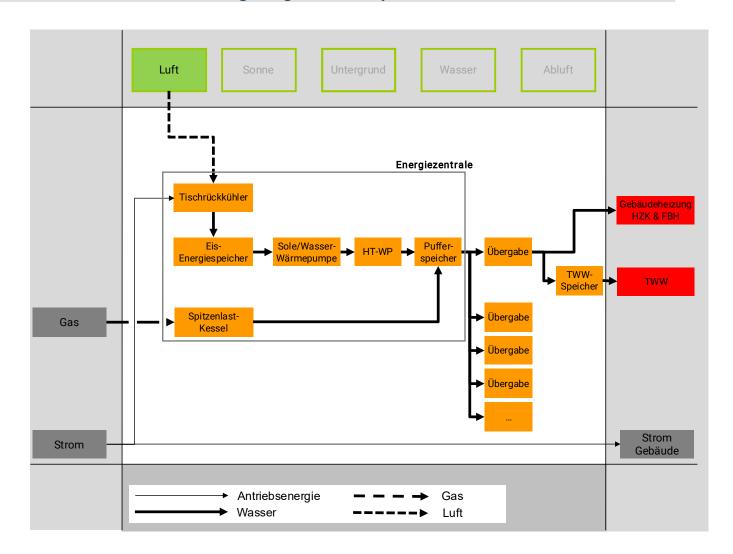
Quelle: ELCO GmbH

Speicher- und Verteiltechnik

Pufferspeicher (V = 80.000 L)

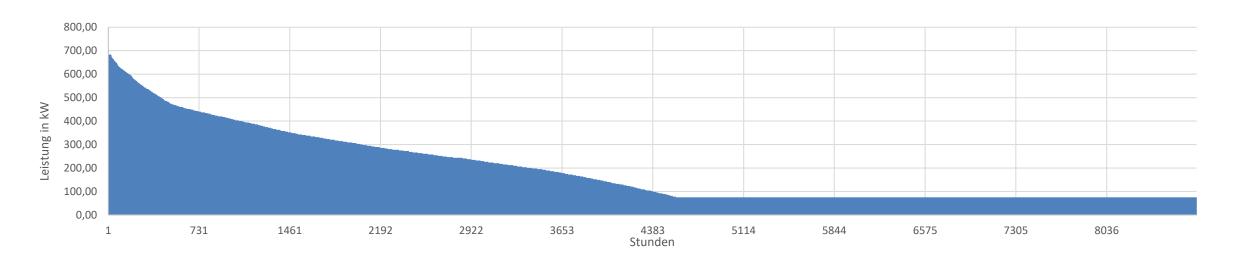
Quelle: Viessmann Holding International GmbH

Übergabestation (in angeschlossenen Gebäuden)
Winter VL/RL 80/50
Sommer VL/RL 70/50



Quelle: PEWO Energietechnik GmbH

AKTUELLE PLANUNGSKONZEPTE ZUR NACHHALTIGEN WÄRMEVERSORGUNG MIT EISSPEICHERN Praxisbeispiel 1: Nahwärmenetz: Versorgungskonzept



AKTUELLE PLANUNGSKONZEPTE ZUR NACHHALTIGEN WÄRMEVERSORGUNG MIT EISSPEICHERN Praxisbeispiel 1: Leistungs- und Deckungsanteile

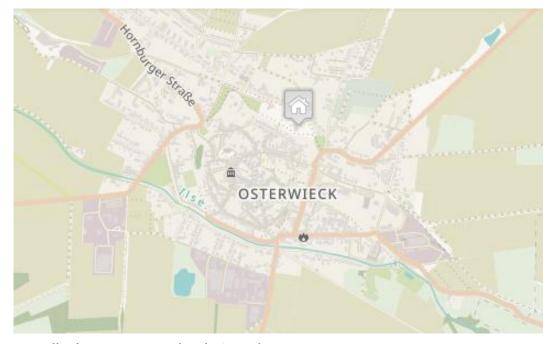
Wärmeerzeuger	Einsatz	Nennleistung	Leistungsanteil*	Erzeugte Wärme	Deckungsanteil	Volllaststunden
Wärmepumpe	Grundlast	500 kW	73%	1.996.530 kWh	99%	3.994 h
Erdgaskessel	Spitzenlast	700 kW	27%	15.887 kWh	1%	23 h

^{*} bivalent-paralleler Betrieb

AKTUELLE PLANUNGSKONZEPTE ZUR NACHHALTIGEN WÄRMEVERSORGUNG MIT EISSPEICHERN Praxisbeispiel 1: Kostenaufstellung

Investitionskosten

	Eis-Energiespeichersystem	
Eisspeicher (Volumen: 1.100 m³)	Höhe: 5,0 m, Durchmesser: 19 m inkl. Rückkühler, Soleleitung, Regelung, Wärmetauschersystem, Erdarbeiten)	774.000 €
Wärmepumpen	Inkl. Zubehör	465.000 €
Spitzenlastkessel	Inkl. Zubehör	65.000 €
Pufferspeicher	80 m³	101.000€
Abgasanlage		2.000€
Wärmeverteilung Heizzentrale		313.000 €
MSR		86.000 €
ELT		220.000€
Gesamt		2.026.000€


IMF

AKTUELLE PLANUNGSKONZEPTE ZUR NACHHALTIGEN WÄRMEVERSORGUNG MIT EISSPEICHERN Praxisbeispiel 2: Sanierung der Wärmeerzeugung in einem Senioren-Pflegeheim

Bestandserfassung

- Projektstandort:
 Osterwieck, Landkreis Harz in Sachsen-Anhalt
- Nutzung: Senioren-Pflegeheim mit 60 Bewohnern
- Bestands-Wärmeerzeuger zur Heizung und TWW-Bereitung:
 - 300 kW Gas-Brennwertkessel aus BJ 2019
- Keine Kühlung im Bestand
- Umbau, Sanierung und Erweiterung geplant

Quelle: https://www.altenheime.de

AKTUELLE PLANUNGSKONZEPTE ZUR NACHHALTIGEN WÄRMEVERSORGUNG MIT EISSPEICHERN Praxisbeispiel 2: Sanierung der Wärmeerzeugung in einem Senioren-Pflegeheim

Planung

- Abbruch von ca. 400 m² vom Bestandsgebäude sowie Erweiterung der Bestands-Liegenschaft um einen Gebäudeteil mit ca. 1.200 m²
- Gesamtfläche nach der Sanierung und Erweiterung: ca. 4.500 m²
- Zentrale Heizung und TWW-Bereitung, Kühlung im Sommer
- Geplantes Energiekonzept zur Heizung, TWWB, passiven und aktiven Kühlung: Eisspeicherheizung inkl. Eis-Energiespeicher, Solar-Luftabsorber und Sole-Wasser-Wärmepumpe; Bestands-Gaskessel als Spitzenlast-Wärmeerzeuger
- Auslegung gem. Anforderungen von GEG mit mindestens 65 % Wärmebereitstellung über erneuerbare Energiequellen

	Neubau	Bestand nach der Sanierung	Gesamt
Berechnete Heizlast inkl. Heizregisterleistung der RLT-Anlage	49 kW	109 kW	158 kW
Abgeschätzte Kühllast	59 kW	165 kW	224 kW
Abgeschätzter Wärmebedarf	111.400 kWh/a	439.800 kWh/a	551.200 kWh/a
Abgeschätzter Kühlenergiebedarf	29.700 kWh/a	82.500 kWh/a	112.200 kWh/a

AKTUELLE PLANUNGSKONZEPTE ZUR NACHHALTIGEN WÄRMEVERSORGUNG MIT EISSPEICHERN

Praxisbeispiel 2: Sanierung der Wärmeerzeugung in einem Senioren-Pflegeheim

Quelle und Regeneration

Eis-Energiespeicher Höhe = 2 m, Durchmesser = 12,5 m Gesamtvolumen = 245 m³ (Energiequelle)

Quelle: Viessmann Holding International GmbH

25 m² Solar-Luft-Kollektoren (Energiequelle und Regeneration)

Quelle: GRAMMER Solar GmbH

Energieerzeuger

2 x Sole-Wasser-Wärmepumpe Gesamt-Heizleistung 52 kW (B-5/W35) (Grund- und Mittellast)

300 kW Gas-Brennwert-Wärmeerzeuger (Spitzenlast)

Speicher- und Steuerungstechnik

Pufferspeicher Wärme und Kälte

Quelle: Viessmann Holding International GmbH

Systemsteuerung

Quelle: Viessmann Climate Solutions

AKTUELLE PLANUNGSKONZEPTE ZUR NACHHALTIGEN WÄRMEVERSORGUNG MIT EISSPEICHERN Praxisbeispiel 2: Sanierung der Wärmeerzeugung in einem Senioren-Pflegeheim

Investitionskosten

Eis-Energiespeichersystem		
Investitionskosten der Anlagentechnik, netto, inkl. Eis-Energiespeichersystem Systemsteuerung Wärmepumpe inkl. Pufferspeicher und Zubehör	363.100 € 211.100 € 55.100 € 96.900 €	
Erdarbeiten	78.000 €	
Erdreichverlegte Leitungen	16.500 €	
Umverlegung Gas- und Wasserleitung	20.000 €	
Summe der Investitionskosten (netto)	477.600 €	
Summe der Investitionskosten (brutto)	568.344 €	

AKTUELLE PLANUNGSKONZEPTE ZUR NACHHALTIGEN WÄRMEVERSORGUNG MIT EISSPEICHERN Fazit und Zukunftsperspektive

Zukunftsfähige und nachhaltige Lösung zur Wärme- und Kälteversorgung unterschiedlichster Nutzungen

Einsatz im Bestand möglich

Gesetzeskonform und förderfähig

Wirtschaftlichkeit ist abhängig von den Projektgegebenheiten und unbedingt projektspezifisch zu prüfen

Herausforderungen: Investitionskosten, Platzbedarf, erhöhter Planungs- und Bauaufwand

Vielen Dank für Ihre Aufmerksamkeit

ANSPRECHPARTNER

Anna-Lena Müller anna-lena.mueller@i-mf.de

Khatia Dzebisashvili khatia.dzebisashvili@i-mf.de **KONTAKT**

Ingenieurgesellschaft Meinhardt Fulst

Vienenburg

Kaiserstraße 18

38690 Goslar | Germany

+49 5324 77 99-0

info@i-mf.de | i-mf.de

Alle verwendeten Logos und Markenzeichen sind Eigentum ihrer eingetragenen Besitzer. Aus Gründen der Lesbarkeit wird bei Personenbezeichnungen die männliche Form gewählt, es ist jedoch immer die weibliche Form mitgemeint.